In a nutshell: Muller's method

Given a continuous real-valued function f of a real variable with three initial approximations of a root x_{-2}, x_{-1} and x_{0} where $\left|f\left(x_{-2}\right)\right| \geq\left|f\left(x_{-1}\right)\right| \geq\left|f\left(x_{0}\right)\right|>0$, rearranging them if necessary. If one is zero, we have already found a root. This algorithm uses iteration, quadratic interpolation and a solution to the quadratic equation to approximate a root.

Parameters:

$\varepsilon_{\text {step }} \quad$ The maximum error in the value of the root cannot exceed this value.
$\varepsilon_{\text {abs }} \quad$ The value of the function at the approximation of the root cannot exceed this value.
$N \quad$ The maximum number of iterations.

1. Let $k \leftarrow 0$.
2. If $k>N$, we have iterated N times, so stop and return signalling a failure to converge.
3. If $\left|f\left(x_{-2}\right)\right| \geq\left|f\left(x_{-1}\right)\right| \geq\left|f\left(x_{0}\right)\right|>0$ does not hold, rearrange the values so as to ensure this is true.
4. The next approximation to the root will be x_{k} plus the smaller root of the quadratic polynomial that interpolates the points $\left(x_{k-2}-x_{k}, f\left(x_{k-2}\right)\right),\left(x_{k-1}-x_{k}, f\left(x_{k-1}\right)\right)$ and $\left(0, f\left(x_{k}\right)\right)$.

$$
\begin{aligned}
& \qquad \begin{array}{l}
a \leftarrow \frac{\left(f\left(x_{k-1}\right)-f\left(x_{k-2}\right)\right) x_{k}+\left(f\left(x_{k-2}\right)-f\left(x_{k}\right)\right) x_{k-1}+\left(f\left(x_{k}\right)-f\left(x_{k-1}\right)\right) x_{k-2}}{\left(x_{k-1}-x_{k-2}\right)\left(x_{k-2}-x_{k}\right)\left(x_{k}-x_{k-1}\right)} \\
\text { Let } b
\end{array} \begin{array}{l}
\left(f\left(x_{k-1}\right)-f\left(x_{k-2}\right)\right) x_{k}^{2}+2\left(\left(f\left(x_{k-2}\right)-f\left(x_{k}\right)\right) x_{k-1}+x_{k-2}\left(f\left(x_{k}\right)-f\left(x_{k-1}\right)\right)\right) x_{k} \\
\\
c
\end{array} \quad \leftarrow f\left(x_{k}\right)
\end{aligned}
$$

If $a=0$, the three points are in a straight line, so let $x_{k+1} \leftarrow x_{k}-\frac{c}{b}$;
otherwise, if $b^{2}-4 a c<0$, the roots are imaginary, so return signalling a failure to converge;
otherwise, if $b>0$, let $x_{k+1} \leftarrow x_{k}-\frac{2 c}{b+\sqrt{b^{2}-4 a c}}$,
if $b<0$, let $x_{k+1} \leftarrow x_{k}-\frac{2 c}{b-\sqrt{b^{2}-4 a c}}$,
otherwise it must be that $b=0$, so let $x_{k+1} \leftarrow x_{k}-\sqrt{-\frac{c}{a}}$.
a. If x_{k+1} is not a finite floating-point number, so return signalling a failure to converge.
b. If $\left|x_{k+1}-x_{k}\right|<\varepsilon_{\text {step }}$ and $\left|f\left(x_{k+1}\right)\right|<\varepsilon_{\mathrm{abs}}$, return x_{k+1}.
5. Increment k and return to Step 2.

Convergence

If h is the error, it can be show that the error decreases according to $\mathrm{O}\left(h^{\mu}\right)$ where $\mu \approx 1.8393$ is the real root of $x^{3}-x^{2}-x-1=0$.

